TABLE OF CONTENTS

1.0	INTRODUCTION	. 1
2.0	CHARGED BOARD EVENT AND CHARGED DEVICE MODEL: COMPARISONS AND DIFFERENCES	. 2
3.0	CASE STUDIES OF CUSTOMER RETURNS	. 4
	 3.1 Case Study I: Dual Operational Amplifier 3.2 Case Study II: DSP Integrated Circuit 3.3 Case Study III: Customer Failure With CDM-Like Damage 	. 4 . 9 14
4.0	CHARGED BOARD EVENT TESTS	17
	 4.1 MANUAL CBE TEST METHOD	17 19 21
5.0	CHARGED BOARD EVENT RISK ANALYSIS	23
6.0	CHARGED BOARD EVENT SIMULATIONS	24
7.0	SUMMARY	27
8.0	REFERENCES	27

TABLES

Table 1:	Typical RLC Network Parameters for CDM and CBE Discharges	2
Table 2:	RLC Values for the CBE Discharge Waveforms Shown in Figure 1	4
Table 3:	Board (CBDx) and DUT (Cx) Capacitances	9
Table 4:	Test Results	12
Table 5:	An Example CBE Test Plan	
Table 6:	Stress Levels	
Table 7:	List of Uncertainty Factors and Measurement Errors	23

FIGURES

Figure 1:	Typical CBE Discharge Waveforms	3
Figure 2:	Scanning Electron Microscope (SEM) Image of the Melted / Reflowed AlCu at the	
	Anode of the Input Protection Diode on a Customer Dual Operational Amplifer Board	
	Failure	5
Figure 3:	FICBE Test Method Setup for the Evaluation Board with the Decapsulated Dual	
	Operational Amplifier and Eight Labeled Test Pads	6

Figure 4:	SEM Image of the Melted / Reflowed AlCu at the Anode of the Input Protection Diod on a Dual Operational Amplifier that was Stressed on an Evaluation Board at - 500 Volts ELCBE	e 7
Figure 5:	SEM Image of the Catastrophic Damage (Fused Open AlCu and Melted Si) at the Same Site as Shown in Figures 2 and 4	7
Figure 6:	Comparison of FICBE Versus FICDM Discharge Waveforms at Dual Operational Amplifier Pad / Pin 2 Showing the Higher Energy in the CBE Event for the Evaluation Board Shown in Figure 3	า 8
Figure 7:	Schematic of the FICDM (Cx) and FICBE (CBDx) Capacitive Elements Contributing the Waveforms in Figure 6	to 8
Figure 8:	Optical (a) and Corresponding Focused Ion Beam (b) Cross-Section Image of the Melted / Reflowed METAL4 AICu "Fingers" and Overlying Cracked Glassivation on a Customer DSP Board Failure	ι . 10
Figure 9:	FICBE Test Method Setup for the Cut-Down Customer Production Board with the Decapsulated DSP	. 11
Figure 10	 FIB Cross-Section Image of the Melted and Reflowed MET4 AlCu and Cracked Glassivation on a DSP IC Stressed at – 250 volts CBE using the Setup in Figure 9. 	. 11
Figure 11	: Typical Catastrophic DSP Damage Observed Along the Supply Buses and Adjace Bond Pads after Stressing the Cut-Down Customer Boards at the CBE Fail Voltag Listed in Table 4	nt es . 12
Figure 12	: Comparison of FICBE (a.k.a. FICBM) and FICDM Discharge Waveforms at a DSP Ground Pad and Pin Showing the Higher Energy in the CBE Event for the Cut- Down PCB Shown in Figure 9	. 13
Figure 13	: Schematic Showing the Failure Point on the PMOS Between Vcc Bus and Input Pin 8	. 15
Figure 14	: Pin-Hole like Damage on PMOS Between Vcc Bus and Input Pin 8	. 15
Figure 15	: Waveform Recorded During the Charged Board Test	. 16
Figure 10	Resistance on Pin 8	. 16
Figure 17	: Test Setup for the Manual FICBE Stress	. 18
Figure 18	A Simplified Equivalent Circuit of CBE	. 19
Figure 19	: Flow of RLC Calculation for Damping Factor D < 1	. 20
Figure 20	: A Simplified Equivalent Circuit of CBE	. 21
Figure 21	: Current Waveform of the Stress Level No. 3	. 22
Figure 22	: Spice Simulation Model for CBE	. 25
Figure 23	: An Example Discharge Waveform with 1 Kilovolt Step Pulse	. 25
Figure 24	: Measurement Versus Simulation using RLC Calculations	. 26
Figure 25	: A 3D Simulation Example with Both the Simulation Setup and Surface Current	
	Contour Figures	. 26